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I I I I B+ ¢ We perform encoding model prediction for each dimension
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. How are various features coded across the face network? — : X » Higher level identity relevant dimensions are represented in more anterior
* Neural networks are good models of fMRI brain data but B P regIons
are difficult to interpret
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»  We fit a linear encoding model between model ©F Y\(,;bb &
COnCIU SlOn representations and fMRI responses ©
» FactorVAE performs as well as VAE and VGG in OFA and OFA
FFA. No models predict activity in STS well. 04
* Disentangled generative models performs as well as 0.3
standard generative models and discriminative models . = 02 :
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* The disentangled dimensions are interpretable and provide o 01 H-B . : ',
us with a method to inspect voxel responses g 00 T Dl T =3
» We find that low-level dimensions appear more posterior e :
while high-level dimensions appear more anterior § e ' CEA
» Future work will investigate the role of entangled dimensions =
in identity coding B oa .
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